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Abstract: In [1, 2] it has been mentioned that the Cabibbo angle θC might arise from a

dihedral flavor symmetry (which is broken to different (directions of) subgroups in the up

and the down quark sector). Here we construct a low energy model which incorporates this

idea. The gauge group is the one of the Standard Model and D7 × Z
(aux)
2 serves as flavor

symmetry. The additional Z
(aux)
2 is necessary in order to maintain two sets of Higgs fields,

one which couples only to up quarks and another one coupling only to down quarks. We

assume that D7 is broken spontaneously at the electroweak scale by vacuum expectation

values of SU(2)L doublet Higgs fields. The quark masses and mixing parameters can be

accommodated well. Furthermore, the potential of the Higgs fields is studied numerically

in order to show that the required configuration of the vacuum expectation values can be

achieved. We also comment on more minimalist models which explain the Cabibbo angle

in terms of group theoretical quantities, while θq
13 and θq

23 vanish at leading order. Finally,

we perform a detailed numerical study of the lepton mixing matrix VMNS in which one of

its elements is entirely determined by the group theory of a dihedral symmetry. Thereby,

we show that nearly tri-bi-maximal mixing can also be produced by a dihedral flavor group

with preserved subgroups.
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1. Introduction

Discrete groups have been widely used as flavor symmetry. However, only in some special

cases there is a direct connection between the flavor group GF and the resulting mix-

ing pattern for the fermions, i.e. a correlation which does not rely on further parameter

equalities not induced by GF . This has probably been first exploited in the successful

A4 models [3] to predict tri-bi-maximal mixing (TBM). Later on this has been studied in

a more general way with the help of so-called mass-independent textures [4]. In [2] the

groups which can produce TBM (at least partly), if non-trivial subgroups are preserved in

– 1 –



J
H
E
P
0
3
(
2
0
0
8
)
0
7
0

the neutrino and charged lepton sector, have been constructed, a recipe is given to generate

other mixing patterns in the same way and a possibility to explain the Cabibbo angle θC

has been briefly mentioned. In our recent paper [1] we conversely derived the possible mass

matrix structures arising from dihedral symmetries, if they are broken in a non-trivial way

and studied how they can lead to maximal atmospheric mixing and vanishing θ13 as well

as to a prediction of θC . The key feature in all these studies is the existence of residual

subgroups in different sectors of the theory. Especially, the fact that sizable mixing results

from the mismatch of two different (directions of) subgroups is important. For example, in

the group A4 (T ′) [3, 5] which has been studied in great detail TBM in the lepton sector

is predicted, if one assumes that the left-handed leptons transform as a triplet under A4

(T ′), and the left-handed conjugate leptons, ec, µc and τ c, as the three non-equivalent

one-dimensional representations of the group. There exist two sets of gauge singlets which

transform non-trivially under A4 (T ′): one set only couples to neutrinos at the leading or-

der (LO), while the other one only to charged leptons (fermions). The first one breaks A4

(T ′) spontaneously down to Z2 (Z4) and the latter one down to Z3. The lepton mixing then

stems from two sectors in which different subgroups of A4 (T ′) are conserved. In contrast

to this, the up quark and down quark mass matrix preserve the same subgroup at LO [5].

In [1, 2] it has been observed that θC or equivalently the CKM matrix element |Vus| can

be predicted with a dihedral flavor symmetry in terms of group theoretical indices only,

such as the index n of the group Dn, the index j of the representation under which the

(left-handed) quarks transform and the misalignment of the two different (directions of)

subgroups Z2 =< BAmu > and Z2 =< BAmd >:

|Vus| =

∣

∣

∣

∣

cos

(

π (mu −md) j

n

)∣

∣

∣

∣

(1.1)

There is a crucial difference between these two examples using a dihedral group and A4

(T ′) as flavor symmetry, namely the issue whether the representations under which the

Higgs (flavon) fields transform are chosen or not. In [1, 2] it was assumed that the trans-

formation properties of the Higgs fields are not selected by hand, but it was only required

that their vacuum expectation values (VEVs) conserve the relevant subgroup of the flavor

symmetry. Due to this the resulting mass matrices are only determined by the choice of

the fermion representations, the flavor group and the preserved subgroups, but not by the

choice of the scalar fields. However, in the case of the A4 (T ′) it is necessary to choose the

transformation properties of the scalar fields properly, i.e. one has to exclude scalars which

transform as non-trivial singlets under A4 (T ′) and couple to neutrinos at LO, in order to

arrive at the TBM scenario [2, 4 – 6].

In this paper we investigate the idea of [1, 2] by constructing a viable (low energy) model

for the quark sector. The gauge group is chosen to be the one of the Standard Model (SM),

while the smallest flavor symmetry which is appropriate is D7. This group has already been

employed as flavor symmetry in [7] in order to produce textures in the up and down quark

mass matrices which lead to a prediction of sin(2β) (sin(2φ1)), which is the CP violation

parameter in B decays. In our analysis we study the mass matrices numerically in order

to demonstrate that all quark masses and mixing parameters can be accommodated. We
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discuss the Higgs potential under the assumption that all involved fields are copies of the

SM Higgs doublet. Furthermore, instead of accommodating all quark mixing angles at LO

it is also worth studying setups in which the Cabibbo angle is predicted in terms of group

theoretical quantities, while the two other mixing angles are zero. This can be done in at

least two different ways which we will discuss. Finally, we motivate possible extensions of

the model to the lepton sector by performing a detailed numerical study. Additionally, we

show that nearly TBM can be also accommodated by using a dihedral flavor symmetry.

The paper is organized as follows: in section 2 we review the findings of [1] which we

explore in more detail; section 3 treats the mixing matrix VCKM only - in an analytic way

as well as numerically; in section 4 we study a model for the quark sector which incorpo-

rates the idea presented in [1, 2] and show that it fits both quark mixings and masses; in

section 5 the Higgs potential, belonging to one of the models of section 4, is discussed and

a numerical analysis proves that the advocated VEV structure can be achieved. Section 6

is devoted to ansätze in which only the Cabibbo angle is generated at LO. In section 7

we perform a similar analysis, as for the quark mixing matrix VCKM in section 3, for the

lepton mixing matrix VMNS. Thereby, we assume that the neutrinos are Dirac particles

as all the other fermions and are normally ordered. Finally, we summarize our results in

section 8. Appendix A contains the possible forms of the mixing matrices VCKM and VMNS.

In appendix B the group theory of D7 is presented. Further details of the study of the

Higgs sector are relegated to appendix C.

2. Basics

In this section we repeat the findings of [1] concerning the possible structure of (Dirac)

mass matrices with a non-vanishing determinant. They are of the form:

M1 =







A 0 0

0 B 0

0 0 C






, M2 =







A 0 0

0 0 B

0 C 0






(2.1)

M3 =







A 0 0

0 B C

0 D E






, (2.2)

M4 =







0 A B

C D E

−C e−i φ j D e−i φ j E e−i φ j






and M5 =







A C C e−i φk

B D E

B e−i φ j E e−i φ (j−k) D e−i φ (j+k)







(2.3)

where A,B,C,D,E are complex numbers which are products of Yukawa couplings and

VEVs, φ = 2 π
n
m (n: index of the dihedral group, m: index of the breaking direction)

and j, k are indices of representations. Regarding M4 notice that we presented in [1] the

transpose of this matrix. However, a transposition in general only corresponds to the

exchange of the transformation properties of the left-handed and left-handed conjugate

fields under the flavor symmetry and therefore does not change the group theoretical part
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of the discussion. These matrices are determined up to permutations of columns and rows

which correspond to permutations among the three generations of the fields. We work in

the SM and with the assumption that all Higgs fields H in the model are copies of the SM

one. Therefore the displayed mass matrices are those for down-type fermions, i.e. down

quarks and charged leptons. The corresponding ones for up-type fermions, i.e. up quarks

and (Dirac) neutrinos, require some changes due to the fact that only the conjugates of the

Higgs fields, ǫH⋆, couple to up-type fermions and that we use complex matrices for the two-

dimensional representations of Dn. According to the rules of [1] M4 and M5 are of the form

M4 =







0 A B

C ei φ j D ei φ j E ei φ j

−C D E






and M5 =







A C ei φk C

B ei φ j D ei φ (j+k) E ei φ (j−k)

B E D






(2.4)

Explicit examples are given in section 4. We concentrate on the last two forms, M4 and

M5, since we want to accommodate all masses and mixing parameters at tree level (apart

from section 6) and also would like to have the same mass matrix structure for up quarks

(Dirac neutrinos) and down quarks (charged leptons).

Let us briefly mention the origin of the matrix structures M4 and M5. The flavor sym-

metry is a single-valued dihedral group Dn with arbitrary index n. The preserved sub-

group is in both cases Z2 =< BAm > where m = 0, 1, . . . , n − 1. This subgroup allows

non-vanishing VEVs for the following one-dimensional representations: 11 (is always al-

lowed to have a VEV), 13 for m even and 14 for m odd. All two-dimensional repre-

sentations acquire a so-called structured VEV, i.e. for two fields ψ1,2 transforming as an

irreducible two-dimensional representation 2p their VEVs have to have the correlation:

〈ψ1〉 = 〈ψ2〉e−
2 π i p m

n . The notation of the representations used here is according to the one

given in [1]. In case of M4 we take the left-handed fields L to transform as 1k + 2j under

the dihedral group, and the left-handed conjugate fields Lc transform as the three singlets

1i1 +1i2 +1i3 . A study of all possible assignments shows that one of the entries in the first

row needs to be zero in order to prevent the determinant of the matrix from being zero. The

matrix structure M5 arises, if both left-handed and left-handed conjugate fermions trans-

form as 1+2, L ∼ (1i,2j) and Lc ∼ (1l,2k). Here the constraint det(M) 6= 0 enforces the

(11) element of the mass matrix to be non-zero, i.e. 1i×1l has to have a non-vanishing VEV.

To study the mixing matrices arising from M4 and M5 for down-type as well as up-type

fermions we observe that the products MiM
†
i , i = 4, 5, can be written in the general form







a b ei β b ei (β+φ j)

b e−i β c d ei φ j

b e−i (β+φ j) d e−i φ j c







where a, b, c, d and β are real functions of A, B, C,D and E. The phase β lies in the interval

[0, 2π). Since we work in the basis in which the left-handed fields are on the left-hand side

and the left-handed conjugate fields on the right-hand side, the unitary matrix which diag-

onalizes MiM
†
i acts on the left-handed fields and therefore determines the physical mixing

matrices. The three eigenvalues are given as (c − d), 1
2 (a + c + d −

√

(a− c− d)2 + 8 b2)
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and 1
2 (a + c + d +

√

(a− c− d)2 + 8 b2). Assuming this ordering of the eigenvalues the

mixing matrix U which fulfills U †MiM
†
i U = diag is of the form:

U =







0 cos(θ) ei β sin(θ) ei β

− 1√
2

ei φ j − sin(θ)√
2

cos(θ)√
2

1√
2

− sin(θ)√
2

e−i φ j cos(θ)√
2

e−i φ j







The angle θ is determined to be tan(2 θ) = 2
√

2 b
c+d−a

. Therefore it lies in the interval [0, π
2 ).

If the three eigenvalues are not degenerate, the eigenvectors are determined by them up to

phases.1 Therefore the variants of the mixing matrix U are given by permutations of the

columns. With this at hand we can look for possible interesting structures in the mixing

matrix which is just the product of two matrices of this form, i.e. V = W T
1 W ⋆

2 with Wi

being a variant of U . For V = VCKM we have W1 ≡ Uu which is the unitary matrix diago-

nalizing the up quark mass matrix and W2 ≡ Ud which is the corresponding matrix for the

down quarks. In case of V = VMNS, W1 is equivalent to Ul and W2 to Uν .
2 The matrix Wi

contains the group theoretical phase φi according to the breaking direction mi, the angle θi

and the phase βi. For W1 ≡ Uu we also use the notation φu, mu, θu and βu. An analogous

convention is used for Ud, Ul and Uν . It turns out that one of the elements is determined

by the index j of the representation 2j under which two of the left-handed fields transform

and the difference of the group theoretical phases φ1 and φ2 only. The actual form of (the

absolute value of) the element is

1

2

∣

∣

∣
1 + ei (φ1−φ2) j

∣

∣

∣
=

∣

∣

∣

∣

cos

(

(φ1 − φ2)
j

2

)∣

∣

∣

∣

=
∣

∣

∣
cos
(π

n
(m1 −m2) j

)∣

∣

∣
(2.5)

Note that this value is only non-trivial, if m1 6= m2, i.e. the (directions of the) subgroups

which are preserved in the up quark (Dirac neutrino) sector and the down quark (charged

lepton) sector are not the same. This element can be traced back to the eigenvectors

which correspond to the eigenvalue c− d. Therefore the ordering of the eigenvectors in the

up quark (Dirac neutrino) and down quark (charged lepton) sector determines in which

position of the mixing matrix the fixed element appears.

In [1, 2] it was already mentioned that one can accommodate the CKM matrix element |Vus|
by cos(3 π

7 ) ≈ 0.2225, i.e. by taking n = 7 and for example j = 3, mu = 1 and md = 0 in

eq. (2.5). Here we show first which of the other elements of VCKM can also be accommodated

well by the form
∣

∣cos(π
n

(mu −md) j)
∣

∣. The elements of VCKM are precisely measured [8]

|VCKM| =







0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 (3.96+0.09
−0.09) × 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 (42.21+0.10
−0.80) × 10−3

(8.14+0.32
−0.64) × 10−3 (41.61+0.12

−0.78) × 10−3 0.999100+0.000034
−0.000004







1Since the eigenvectors should be normalized their length is fixed to one.
2Throughout the paper we assume that the neutrinos are Dirac particles for simplicity. Therefore VMNS

has the same structure as VCKM, i.e. there are no (additional) Majorana phases present in the lepton sector.
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together with the Jarlskog invariant [9] JCP = (3.08+0.16
−0.18) × 10−5. We restrict ourselves to

values of n smaller than 30, since then the group order is smaller than 60. Using eq. (2.5)

we see that we can put the elements of the 1− 2 sub-block, i.e. |Vud|, |Vus|, |Vcd| and |Vcs|,
into this form. As |Vcd| ≈ |Vus| holds to good accuracy, also |Vcd| can be described well by

cos(3 π
7 ). Furthermore |Vud| ≈ |Vcs| can be approximated well as cos( π

14 ) ≈ 0.9749 which

points towards the flavor group D14. Note that the value of |Vud| as well as of |Vcs| can

be accommodated even a bit better with cos(2 π
27 ) ≈ 0.9730. However, this needs the group

D27 which is a group of order 54 and therefore already quite large. Note that, even if |Vus|
is taken to be cos(3 π

7 ), there is no unique solution which flavor symmetry has to be used

and to which subgroup it has to be broken, since for example taking j = 1, mu = 3, md = 0

and n = 7 leads to
∣

∣cos(π
n

(mu −md) j)
∣

∣ = | cos(3 π
7 )| as well as j = 3, mu = 1, md = 0 and

n = 7. In the next section we study the cases |Vus| and |Vcd| equal to cos(3 π
7 ) and |Vud|

and |Vcs| equal to cos( π
14 ) in greater detail and thereby check whether we can adjust the

two other mixing angles θq
13 and θ

q
23 with the free angles θu and θd and also the Jarlskog

invariant JCP with the difference of the two phases βu and βd.

3. Analysis of VCKM only

3.1 Remarks

There are six possible forms for U which correspond to different identifications of the

eigenvalues. However, the fact that mu ≪ mc ≪ mt and md ≪ ms ≪ mb allows only

three of them, as the eigenvalue 1
2 (a+ c+ d−

√

(a− c− d)2 + 8 b2) is smaller than 1
2 (a+

c+ d+
√

(a− c− d)2 + 8 b2). Therefore, we will only vary the position of the eigenvector

belonging to the eigenvalue c− d, while keeping the ordering of the two others fixed. The

three different forms of the mixing matrix U are then:

U =







0 cos(θ) ei β sin(θ) ei β

− 1√
2

ei φ j − sin(θ)√
2

cos(θ)√
2

1√
2

− sin(θ)√
2

e−i φ j cos(θ)√
2

e−i φ j






, U ′=







cos(θ) ei β 0 sin(θ) ei β

− sin(θ)√
2

− 1√
2
ei φ j cos(θ)√

2

− sin(θ)√
2

e−i φ j 1√
2

cos(θ)√
2

e−i φ j






,

U ′ ′ =







cos(θ) ei β sin(θ) ei β 0

− sin(θ)√
2

cos(θ)√
2

− 1√
2

ei φ j

− sin(θ)√
2

e−i φ j cos(θ)√
2

e−i φ j 1√
2







Combining them leads to nine distinct possibilities for the CKM matrix whose forms are

displayed in appendix A. Since we already mentioned that we want to concentrate on the

1 − 2 sub-block we only need to consider the four possible combinations which involve U

and U ′.

3.2 Numerical study

We now discuss the results of our fits to the CKM matrix. The forms of Vmix presented

in appendix A show that two of the elements |Vub|, |Vcb|, |Vtd| and |Vts| are determined by

cos(θu,d) in each of the four different cases. As these elements are small, the free angles θu
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and θd are restricted to be θd,u ≈ π
2 . Therefore θd,u is expanded around π

2 , θd,u = π
2 − ǫd,u,

ǫd,u > 0. The resulting four CKM matrices are (up to the first order in ǫu,d)

|V 11
CKM| ≈







cos( π
14 ) cos(3 π

7 ) cos(3 π
7 ) ǫd

cos(3 π
7 ) cos( π

14 ) 1
2 |(1 + e

π
7

i) ǫd − 2 ei α ǫu|
cos(3 π

7 ) ǫu
1
2 |(1 + e

π
7

i) ǫu − 2 ei α ǫd| 1






(3.1)

|V 12
CKM| ≈







cos( π
14 ) cos(3 π

7 ) cos( π
14 ) ǫd

cos(3 π
7 ) cos( π

14 ) 1
2 |(1 + e

6 π
7

i) ǫd − 2 ei α ǫu|
1
2 |(1 + e

6 π
7

i) ǫu − 2 ei α ǫd| cos( π
14 ) ǫu 1






(3.2)

|V 21
CKM| ≈







cos( π
14 ) cos(3 π

7 ) 1
2 |(1 + e

6 π
7

i) ǫd − 2 ei α ǫu|
cos(3 π

7 ) cos( π
14) cos( π

14 ) ǫd

cos( π
14) ǫu

1
2 |(1 + e

6 π
7

i) ǫu − 2 ei α ǫd| 1






(3.3)

|V 22
CKM| ≈







cos( π
14 ) cos(3 π

7 ) 1
2 |(1 + e

π
7

i) ǫd − 2 ei α ǫu|
cos(3 π

7 ) cos( π
14 ) cos(3 π

7 ) ǫd
1
2 |(1 + e

π
7

i) ǫu − 2 ei α ǫd| cos(3 π
7 ) ǫu 1






(3.4)

Without loss of generality we have set the representation index j to 1, the group theoretical

phase φu to zero (mu = 0) and the phase φd to 2 π
14 (md = 1, n = 14) for eq. (3.1) and

eq. (3.4), while we take it to be 6 π
7 (md = 3, n = 7) for eq. (3.2) and eq. (3.3).

Comparing eq. (3.1) to the best fit values of |Vub| and |Vtd| given in [8] leads to ǫu ≈ 0.0366

and ǫd ≈ 0.0178. The phase α is then mainly determined by the values of |Vcb| and |Vts|.
A numerical computation leads to a best fit for α ≈ 4.810.3 Furthermore one can calculate

JCP in this case:

J11
CP =

1

8
sin
(π

7

)

sin
( π

14

)

sin (2 θd) sin (2 θu) sin
( π

14
− α

)

≈ 1

2
sin
(π

7

)

sin
( π

14

)

sin
( π

14
− α

)

ǫu ǫd

A similar analysis can be carried out for the three other matrices V 12
CKM, V 21

CKM and V 22
CKM

with similar results which we have collected in table 1. The value of JCP belonging to

V 22
CKM, i.e. J22

CP, is of the same form as J11
CP. For V 12

CKM and V 21
CKM one finds

J12
CP = J21

CP = −1

8
sin

(

6π

7

)

sin

(

3π

7

)

sin (2 θd) sin (2 θu) sin

(

3π

7
− α

)

≈ −1

2
sin

(

6π

7

)

sin

(

3π

7

)

sin

(

3π

7
− α

)

ǫu ǫd

As one can see in table 1, ǫu,d have to be larger in case of V 22
CKM, since they are determined by

|Vcb| and |Vts|. In this way the expansion of θu,d around π
2 gets worse and the second order

in ǫu,d becomes important. This can be seen best in |Vus| ≈ 0.2225 and |Vcd| ≈ 0.2225 which

are lowered to 0.2186(5) such that the discrepancy between the experimentally measured

3We performed a χ2 fit of JCP and all elements of |VCKM| excluding the one which is fixed by group theory.

Instead of taking the (very small) experimental errors we simply assumed 10% errors for all quantities.
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Parameters V 11
CKM V 12

CKM V 21
CKM V 22

CKM

ǫu +0.0364 +0.0427 +0.00831 +0.188

ǫd +0.0177 +0.00405 +0.0433 +0.191

α 4.810 2.355 1.764 0.2056

Table 1: Fit results for ǫu,d (θu,d) and the phase α for VCKM with either |Vud|, |Vus|, |Vcd| or |Vcs|
being group theoretically determined.

value and the result of the fit gets larger. However, corrections from higher-dimensional

operators and explicit breakings of the residual subgroups can lead to further contributions

allowing all data to be fitted successfully.

4. Analysis of the quark sector

In a next step, we construct a viable model at least for the quark sector. The model is

viable, if we find a numerical solution which accommodates not only the mixing parameters,

but also the quark masses. Due to the strong hierarchy among the quarks this is a non-

trivial task, although the number of parameters in the mass matrices Mu and Md exceeds

the number of observables. In the simplest case we assume that all Higgs fields are SU(2)L
doublets as the Higgs field in the SM.

4.1 D7 assignments for quarks

Here we present ways to produce the two matrix structures M4 and M5 shown in eq. (2.3)

and eq. (2.4) with the help of the dihedral group D7. Choosing D7 as flavor symmetry

leaves us the possibility of either determining |Vus| or |Vcd| in terms of group theoretical

quantities as cos(3 π
7 ).

4.1.1 Matrix structure M4

For M4, we assign the quarks to

Q1 ∼ 11 ,

(

Q2

Q3

)

∼ 21 , uc
1, d

c
1 ∼ 12 , uc

2,3, d
c
2,3 ∼ 11 (4.1)

under D7. We assume that the theory contains Higgs doublet fields transforming as 11 and

21, which we call Hs and H1,2. As the relation between the mixing parameters of VCKM

and the group theoretical indices only arises, if the flavor symmetry D7 is broken down to

a subgroup Z2 =< BAmu > by fields which couple to up quarks, while it is broken down

to Z2 =< BAmd > with md 6= mu by fields coupling to down quarks, we need an extra

symmetry to perform this separation. In the SM this can be achieved by a Z
(aux)
2 symmetry:

dc
i → −dc

i and Hd
s → −Hd

s , Hd
i → −Hd

i (4.2)

while all other fields Qi, u
c
i , H

u
s and Hu

1,2 are invariant under Z
(aux)
2 . In principle also a

Higgs field transforming as 12 under D7 could couple directly to the quarks. However,
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if this field acquires a non-vanishing VEV, its VEV breaks the residual Z2 generated by

< BAm >. The matrices are of the form:

Mu =







0 yu
1 〈Hu

s 〉⋆ yu
2 〈Hu

s 〉⋆
yu
3 〈Hu

1 〉⋆ yu
4 〈Hu

1 〉⋆ yu
5 〈Hu

1 〉⋆
−yu

3 〈Hu
2 〉⋆ yu

4 〈Hu
2 〉⋆ yu

5 〈Hu
2 〉⋆






and Md =







0 yd
1 〈Hd

s 〉 yd
2 〈Hd

s 〉
yd
3 〈Hd

2 〉 yd
4 〈Hd

2 〉 yd
5 〈Hd

2 〉
−yd

3 〈Hd
1 〉 yd

4 〈Hd
1 〉 yd

5 〈Hd
1 〉







where yu,d
i denote Yukawa couplings. The VEV structure is taken to be:

〈Hd,u
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 = vd , 〈Hu

1 〉 = vu e−
3 π i
7 and 〈Hu

2 〉 = vu e
3 π i
7

with vd > 0 and vu > 0. The VEVs are required to be real apart from the phase ±3π
7 which

is necessary for the correct breaking to the desired subgroup ofD7. The parameters A,B, . . .

shown in eq. (2.3) and eq. (2.4) can be written in terms of Yukawa couplings and VEVs:

Au = yu
1 〈Hu

s 〉 , Bu = yu
2 〈Hu

s 〉 , Cu = yu
3vue−

3 π i
7 , Du = yu

4vue−
3 π i
7 , Eu = yu

5vue−
3 π i
7 ,

Ad = yd
1〈Hd

s 〉, Bd = yd
2〈Hd

s 〉, Cd = yd
3vd, Dd = yd

4vd, Ed = yd
5vd

together with φu = 6 π
7 (mu = 3), φd = 0 (md = 0) and j = 1. The preserved Z2 subgroups

are generated by BA3 and B. As we have not fixed the ordering of the mass eigenvalues,

the question which of the elements of VCKM is determined by group theoretical quantities

to be cos(3 π
7 ) cannot be answered at this point.

4.1.2 Matrix structure M5

For the case of M5 we can assign the quarks to:

Q1, u
c
1, d

c
1 ∼ 11 ,

(

Q2

Q3

)

,

(

uc
2

uc
3

)

,

(

dc
2

dc
3

)

∼ 21 (4.3)

under D7. We then need five Higgs fields for each sector, i.e. for the up and the down

quarks. These transform as

Hu
s ∼ (11,+1) ,

(

Hu
1

Hu
2

)

∼ (21,+1) ,

(

hu
1

hu
2

)

∼ (22,+1)

Hd
s ∼ (11,−1) ,

(

Hd
1

Hd
2

)

∼ (21,−1) ,

(

hd
1

hd
2

)

∼ (22,−1)

where we again assumed the existence of an extra Z
(aux)
2 symmetry. The mass matrices

are in terms of Yukawa couplings and VEVs:

Mu =







yu
1 〈Hu

s 〉⋆ yu
2 〈Hu

1 〉⋆ yu
2 〈Hu

2 〉⋆
yu
3 〈Hu

1 〉⋆ yu
5 〈hu

1〉⋆ yu
4 〈Hu

s 〉⋆
yu
3 〈Hu

2 〉⋆ yu
4 〈Hu

s 〉⋆ yu
5 〈hu

2 〉⋆






and Md =







yd
1 〈Hd

s 〉 yd
2 〈Hd

2 〉 yd
2 〈Hd

1 〉
yd
3 〈Hd

2 〉 yd
5 〈hd

2〉 yd
4 〈Hd

s 〉
yd
3 〈Hd

1 〉 yd
4 〈Hd

s 〉 yd
5 〈hd

1〉







The VEV structure is assumed to be:

〈Hd,u
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 = vd , 〈hd

1〉 = 〈hd
2〉 = wd ,

〈Hu
1 〉 = vu e−

3 π i
7 , 〈Hu

2 〉 = vu e
3 π i
7 , 〈hu

1 〉 = wu e−
6 π i
7 and 〈hu

2 〉 = wu e
6 π i
7
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with vd,u > 0 and wd,u > 0. As above we only consider real values for the VEVs apart

from the phases which are required in order to break down to a certain subgroup of D7.

Compared to the form of M5 (see eq. (2.3) and eq. (2.4)) we see that the parameters

A,B, . . . are given by:

Au = yu
1 〈Hu

s 〉, Bu = yu
3vue−

3 π i
7 , Cu = yu

2vue−
3 π i
7 , Du = yu

5wue−
6 π i
7 , Eu = yu

4 〈Hu
s 〉,

Ad = yd
1〈Hd

s 〉, Bd = yd
3vd, Cd = yd

2vd, Dd = yd
5wd, Ed = yd

4〈Hd
s 〉

together with φu = 6 π
7 (mu = 3), φd = 0 (md = 0) and j = k = 1. Therefore the preserved

subgroups are again Z2 =< BA3 > and Z2 =< B >.

Note that the shown assignments are not unique, since it is also possible to use another

two-dimensional representation instead of 21 for the fermions. Obviously, then also the

transformation properties of the Higgs fields have to be changed accordingly. From the

viewpoint of unification the second assignment in which the left-handed as well as the

left-handed conjugate fields transform as 1 + 2 is more desirable. However in this case

we need at least five Higgs fields in each sector transforming as 11, 2i, 2j with i 6= j in

order to arrive at the matrix structure M5. Since we want to show the minimal model,

we constrain ourselves to the case of M4 in the following numerical study and the analysis

of the corresponding Higgs potential. We only give a numerical solution for the second

matrix structure M5.

4.2 Numerical analysis of quark masses and mixing angles

4.2.1 Matrix structure M4

For our numerical results we take all VEVs to have the same absolute value of 61.5 GeV

which equals the electroweak scale 174GeV divided by
√

8, because our complete model

includes eight Higgs fields.4 The Yukawa couplings are taken to be

yu
1=1.07967·ei(−2.17704) , yu

2=2.55955·ei(1.41609) , yu
3=1.9546·10−5 ·ei(2.43366),

yu
4=3.89557·10−2 ·ei(−2.28452), yu

5=7.47229·10−2 ·ei(1.2469),

yd
1=2.52251·10−2 ·ei(3.00267), yd

2=3.92611·10−2 ·ei(−2.29202), yd
3=6.20874·10−4 ·ei(−0.54014),

yd
4=8.95471·10−5 ·ei(−2.13972), yd

5=1.04917·10−4 ·ei(−1.59912)

All quark masses are fitted to the central values at MZ found in [10]. For VCKM, we find:

|VCKM| =







0.97492 0.2225 3.95 × 10−3

0.2224 0.97404 42.23 × 10−3

8.11 × 10−3 41.64 × 10−3 0.9991







and JCP = 3.09 × 10−5. All these values are within a 10% error range [8] with |Vus| fixed

to be cos(3 π
7 ) = 0.2225. Due to the ordering of the eigenvalues the mass of the strange

4The additional two Higgs fields which do not couple to the fermions directly, are necessary in order to

break accidental symmetries present in the Higgs potential which we discuss in section 5. The equality of

the VEVs is motivated by our numerical study of the Higgs potential.
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as well as the one of the up quark is determined by
√

2 |Cd| and
√

2 |Cu|, respectively.

They therefore correspond to the eigenvalue (c − d) in the language of section 2. The

Yukawa couplings lie in the range 10−5 . . . 1 due to the strong hierarchy of the quark

masses. However this can be explained by the Froggatt-Nielsen (FN) mechanism [11].

For example, assuming the FN field ϑ with qFN(ϑ) = −1 and taking qFN(Q1) = +1,

qFN(Q2,3) = +2, qFN(dc
1,2,3) = 0, qFN(uc

1) = +1 and qFN(uc
2,3) = −1 under U(1)FN allows

all Yukawa couplings to be of natural order.

4.2.2 Matrix structure M5

For the second matrix structure M5, we also performed a numerical study with the mass

matrix structure given above and found the following possible values for the parameters

Au,d, Bu,d, . . .:

Au = 40.40221·ei (0.185452) , Bu = 0.238084·ei (−2.99845) , Cu = 117.4875·ei (−0.234118) ,

Du = 0.420584·ei (−3.13931) , Eu = 0.984542·ei (−0.849532) ,

Ad = 2.233447·ei (−1.91017) , Bd = 0.051223·ei (−3.05165) , Cd = 1.271448·ei (−0.751605) ,

Dd = 0.058343·ei (−2.41411) , Ed = 0.056221·ei (−2.37708) .

All values are given in GeV. The phases φu,d can be chosen to be φu = 6 π
7 and φd = 0.

Again, the quark masses match the central values given in [10], while the absolute values

of VCKM are:

|VCKM| =







0.97489 0.2226 3.95 × 10−3

0.2225 0.97401 42.23 × 10−3

8.11 × 10−3 41.64 × 10−3 0.9991







together with JCP = 3.09 × 10−5. They agree quite well with the experimental results.

Note here that this time not |Vus|, but now |Vcd| is given in terms of the group theoretical

indices, i.e. |Vcd| = cos(3 π
7 ) = 0.2225. This is due to the fact that the eigenvalue (c − d)

introduced in section 2 is given by mc in the up quark and by md in the down quark sector.

These masses can be expressed in a simple way in terms of the parameters Du,d and Eu,d,

namely mc = |Du −Eu e−i φu k| and md = |Dd −Ed ei φd k| with φu = 6 π
7 , φd = 0 and k = 1.

Also here the hierarchy among the parameters Au,d, Bu,d, . . . may not be explained by the

flavor symmetry D7 × Z2
(aux) alone. However, we can again assume the existence of an

additional U(1)FN symmetry.

5. Higgs sector

In this section, the Higgs sector belonging to the first numerical example given in sec-

tion 4.1.1 is discussed. As already mentioned above, we concentrate on a multi-Higgs

doublet potential. We are aware of the fact that such multi-Higgs doublet models usu-

ally suffer from the problem that large FCNCs are induced by the additional Higgs fields.

However, as a proof of principle that we can produce our required VEV configuration the
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consideration of such a setup seems to be reasonable. The minimal number of fields needed

in order to produce the fermion mass matrices is 2 × 3, Hd
s , Hd

1,2 and Hu
s , Hu

1,2.

We first construct the three Higgs doublet potential with Higgs fields Hs ∼ 11 and
(

H1

H2

)

∼ 21.

The potential has the form:5

V3(Hs,Hi) = −µ2
s H

†
s Hs − µ2

D

2
∑

i=1

H
†
i Hi + λs

(

H†
s Hs

)2
+ λ1

(

2
∑

i=1

H
†
i Hi

)2

(5.1)

+λ2

(

H
†
1 H1 −H

†
2 H2

)2
+ λ3 |H†

1 H2|2

+σ1

(

H†
sHs

)

(

2
∑

i=1

H
†
iHi

)

+
{

σ2

(

H†
sH1

)(

H†
sH2

)

+h.c.
}

+σ3

2
∑

i=1

|H†
sHi|2

As already shown in [12] and also mentioned in [13], this potential has an additional U(1)

symmetry, i.e. there exists a further U(1) in the potential apart from the U(1)Y . This

further symmetry is necessarily broken by our desired VEV structure such that a massless

Goldstone boson appears in the Higgs spectrum which is not eaten by a gauge boson.

This problem cannot be solved by taking into account the whole potential for all six Higgs

fields. Therefore we have to enlarge the Higgs sector by further fields in order to create

new D7-invariant couplings which break this accidental symmetry explicitly. We find that

this can be done in the simplest way by adding two Higgs fields transforming as 22 under

D7. Due to their transformation properties they do not directly couple to the fermions (see

section 4.1.1). The complete model then contains eight Higgs doublet fields

Hu
s ∼ (11,+1) ,

(

Hu
1

Hu
2

)

∼ (21,+1) , (5.2)

Hd
s ∼ (11,−1) ,

(

Hd
1

Hd
2

)

∼ (21,−1) and

(

χd
1

χd
2

)

∼ (22,−1)

under D7 × Z
(aux)
2 . The potential consists of three parts:

V = Vu + Vd + Vmixed (5.3)

where Vu denotes the part of the potential which only contains Higgs fields coupling to the

up quarks, Vd contains the five Higgs fields which have a non-vanishing Z
(aux)
2 charge, while

Vmixed consists of all other terms. The explicit form of the potential is given in appendix C.

The VEV structure of the fields Hd,u
s and Hd,u

1,2 is determined by our desire to break down

to two distinct Z2 subgroups in the up and the down quark sector (see section 4.1.1):

〈Hd,u
s 〉 > 0 , 〈Hd

1 〉 = 〈Hd
2 〉 = vd , 〈Hu

1 〉 = vu e−
3 π i
7 and 〈Hu

2 〉 = vu e
3 π i
7

5Note that σ2 is complex, but it can be made real by appropriate redefinition of the field Hs, for example.
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with vd > 0 and vu > 0. In contrast to this, the VEV structure of the fields χd
1,2 is not

fixed in this way. However, in order to preserve the Z2 subgroup generated by B not only

through the VEVs of the fields Hd
s and Hd

1,2, but also by the VEVs of the fields χd
1,2,

〈χd
1〉 = 〈χd

2〉 > 0 will be assumed (see section 2).

We proceed in the following way in order to find a minimum of this potential which allows

for our choice of VEVs: first we treat Vu and Vd separately to find a viable solution for

these two parts of the potential. Thereby, we can allow all parameters in the potential Vd

to be real, as the VEVs of the corresponding Higgs fields are also real. Since Vu suffers

from the above mentioned accidental U(1) symmetry, we find a fourth massless particle

in the Higgs mass spectrum. In a second step we add as many terms as necessary from

Vmixed to get a minimum of the whole potential V which does not have more than the usual

three Goldstone bosons. It turns out that it is sufficient to take into account three terms

in addition to Vu and Vd to get a viable solution. The terms are of the form:

κ2

(

Hu
s
†Hd

s

)2
+ κ5

(

2
∑

i=1

Hu
i
†Hd

i

)2

+ κ19

(

Hu
s
†Hd

s

)

(

2
∑

i=1

Hu
i
†Hd

i

)

+ h.c. ⊂ Vmixed

All VEVs are taken to have the same absolute value, since this considerably simplifies the

search for a numerical solution, as a fine-tuning of the parameters in the Higgs potential is

avoided. We find that the resulting Higgs masses are usually in between 50 and 500 GeV.

These values are either not favored by the constraints coming from FCNCs or already

excluded by direct searches. There are two reasons for the too low Higgs masses: on the

one hand Vu contains an accidental symmetry and on the other hand all mass parameters

of the potential are chosen to be of natural order, i.e. to be around the electroweak scale.

Additionally, all quartic couplings of the potential must be perturbative. However, as

already mentioned above, this model is not intended to be fully realistic. Adding D7

breaking soft masses to the potential might allow to push the masses of the additional

Higgs particles above 10 TeV.

The rest of the discussion of the potential is relegated to appendix C where we present a

numerical solution for the parameters of the Higgs potential and the resulting Higgs masses.

6. Ways to generate θC only

In the preceding sections we confined ourselves to cases in which all mixing angles can be

reproduced at tree level. Therefore we only discussed the matrix structures M4 and M5 of

eq. (2.3) and eq. (2.4). However, θq
13 and θ

q
23 are roughly an order of magnitude smaller

than the Cabibbo angle θC ≡ θ
q
12 which gives reason for also considering matrix structures

which lead to only θC 6= 0 at LO. For this a block matrix structure (with correlated

elements), which we introduced in eq. (2.2), is suitable. Such a structure can be achieved

in at least two different ways: a.) we can simply omit some of the Higgs fields which are in

principle allowed a VEV in order to arrive at the zero elements of the mass matrix; b.) we

can demand that the preserved subgroup is not just a Z2 symmetry, but a dihedral group

Dq with q > 1. For case a.) the simplest example is probably the one in which we take the
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same field assignments as in the case of the matrix structure M5 (see eq. (4.3)), but we

omit the Higgs fields Hu,d
1,2 transforming as 21. The second case b.) cannot be maintained

with the flavor group D7 which we used throughout this work, since it only contains Zq

groups as subgroups, but no dihedral ones Dq, q > 1. Therefore we have to consider the

group D14 instead. One possibility is to breakD14 down to its subgroupD2 =< A7,BAm >

(m = 0, 1, . . . , 6) in order to reproduce a matrix of block structure. We assign the quarks to

Q1, u
c
1, d

c
1 ∼ 11 ,

(

Q2

Q3

)

,

(

uc
2

uc
3

)

,

(

dc
2

dc
3

)

∼ 21

under D14. According to the Kronecker products

11 × 21 = 21 and 21 × 21 = 11 + 12 + 22

the Higgs fields which can in principle couple to form D14-invariants have to transform as

11, 12, 21 and 22. However, 12 is not allowed a VEV and the representation index j of

2j has to be even for preserving a D2 subgroup. Therefore we take

Hu
s ∼ 11 ,

(

Hu
1

Hu
2

)

∼ 22 , Hd
s ∼ 11 and

(

Hd
1

Hd
2

)

∼ 22

(with implicit Z
(aux)
2 assignment as above) and arrive at matrices which are exactly of the

same form as in case a.), if we assume the VEVs to be

〈Hu,d
s 〉 > 0 , 〈Hu

1 〉 = wu e−
6 π i
7 , 〈Hu

2 〉 = wu e
6 π i

7 , 〈Hd
1 〉 = 〈Hd

2 〉 = wd

The subgroups D2 which are preserved by the VEVs are then of the announced form with

mu = 6 for the up quarks and md = 0 for down quarks.

7. Numerical analysis of VMNS

A similar analysis as done in the case of VCKM can also be carried out for the lepton mixing

matrix VMNS. We assume that the neutrinos are Dirac particles as all the other fermions

and that they have the same ordering as the other fermions, i.e. the neutrino mass spectrum

is normally ordered. This allows us to use the matrix structures found in appendix A also

for VMNS. Since the entries of VMNS are not strongly restricted by experiments [14] (at 3σ):

∣

∣

∣

∣

V
(range)
MNS

∣

∣

∣

∣

=







0.79 − 0.88 0.47 − 0.61 < 0.20

0.19 − 0.52 0.42 − 0.73 0.58 − 0.82

0.20 − 0.53 0.44 − 0.74 0.56 − 0.81






(7.1)

there are several more possibilities to accommodate the various matrix elements regarding

the choice of the group index n, and the values ml, mν and j. However, as we intend to build

a model which includes quarks as well as leptons, we stick to the selected values of n, n = 7,

n = 14, which fit the CKM matrix elements of the 1 − 2 sub-block best for small n. We

check element by element of VMNS whether we can put it into the form | cos( l π
7 )| where l =
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Element (ij) Possible cosines

(21) cos(3 π
7 ) (≈ 0.2225), cos(5 π

14 ) (≈ 0.4339)

(22) cos(5 π
14 ) (≈ 0.4339), cos(2 π

7 ) (≈ 0.6235)

(23) cos(2 π
7 ) (≈ 0.6235), cos(3 π

14 ) (≈ 0.7818)

(31) cos(3 π
7 ) (≈ 0.2225), cos(5 π

14 ) (≈ 0.4339)

(32) cos(2 π
7 ) (≈ 0.6235)

(33) cos(2 π
7 ) (≈ 0.6235), cos(3 π

14 ) (≈ 0.7818)

Table 2: Possibilities for the group theoretically determined element in VMNS.

0, 1, 2, . . . , 6 or | cos( l π
14 )| with l = 0, 1, 2, . . . , 13. According to eq. (7.1) all elements of the

second and third row can be approximated by a cosine of such a form. We take into account

all possibilities shown in table 2 and perform a numerical fit of the mixing angles θ12, θ13 and

θ23. In the fit procedure we compute the sines of the three mixing angles and compare these

to the best fit values, which are sin2(θbf
23) = 0.5, sin2(θbf

12) = 0.3 and sin2(θbf
13) = 0 [15].6

Again, we replace the experimentally allowed 2σ or 3σ ranges by 10% ranges (around the

best fit value). For sin2(θ13) we consider two possible upper bounds: sin2(θ13) ≤ 0.025

which corresponds to the 2σ bound [15] and a much more loose bound sin2(θ13) ≤ 0.1

being even larger than the 4σ bound [15]. This is done, since the numerical study showed

that loosening the bound on sin2(θ13) leads to several more solutions. Our results for

sin2(θ13) ≤ 0.1 are summarized in table 3 where we display the numerical values for θl, θν

and α = βl − βν together with the resulting mixing angles and the (Dirac) CP phase δ.

One can observe the following: There are some cosines listed in table 2 for which no fit

with χ2 < 1 has been found. In all these cases the value of the fixed VMNS element lies

almost outside the ranges shown in eq. (7.1), e.g. for the (23) element the possible cosines

are cos(2 π
7 ) ≈ 0.6235 and cos(3 π

14 ) ≈ 0.7818 with the first being quite close to the lower

bound (0.58) and the second one close to the upper one (0.82) of the allowed range. More

precisely, the form of |V 23,33
mix | reveals that at least in these cases it is hardly possible to

reconcile the two experimental constraints tan(θ23) being close to 1 and sin(θ13) being

small. Furthermore, one observes that in all cases the CP phase δ is trivial, i.e. 0 or π with

a numerical precision of O(10−6). Therefore JCP always vanishes. In order to understand

this result, we have a look at the formulae given for V 21
mix, V

22
mix, V

31
mix and V 32

mix in appendix A.

As a common feature the (13) element of the mixing matrix is given by

1

2
[−(1 + e−i (φl−φν) j) sin(θl) cos(θν) + 2 ei α cos(θl) sin(θν)] (7.2)

In all cases, θl and θν are predominantly determined by one element of the first row and the

third column of VMNS, respectively. Then α can be used in order to minimize the absolute

6Note that these best fit values are not presented in the same global analysis as the above mentioned

allowed 3 σ ranges for the elements of VMNS. Nevertheless the deviations are very small such that we do

not consider this to lead to a major difference in our numerical analysis.
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Element Cosine θl θν α sin2(θ12) sin2(θ23) sin2(θ13) δ

(21) cos(3 π
7

) 0.9790 0.7881 4.937 0.2957 0.5085 7.037 × 10−2 ∼ π

cos(5 π
14

) 1.1829 0.6725 5.161 0.3001 0.4999 6.173 × 10−3 ∼ 0

(22) cos(5 π
14

) − − − − − − −
cos(2 π

7
) 0.7728 0.4486 5.386 0.2999 0.4996 6.668 × 10−3 ∼ π

(23) cos(2 π
7

) − − − − − − −
cos(3 π

14
) − − − − − − −

(31) cos(3 π
7

) 0.9790 0.7881 4.937 0.2957 0.4915 7.037 × 10−2 ∼ 0

cos(5 π
14

) 1.1829 0.6725 5.161 0.3001 0.5001 6.173 × 10−3 ∼ π

(32) cos(2 π
7

) 0.7728 0.4486 5.386 0.2999 0.5004 6.668 × 10−3 ∼ 0

(33) cos(2 π
7

) − − − − − − −
cos(3 π

14
) − − − − − − −

Table 3: Numerical results for VMNS in case of sin2(θ13) ≤ 0.1 and 10% errors for the other two

sine squares. δ is given with a precision of O(10−6).

value of the (13) element of VMNS. A minimization with respect to α shows

α = −(φl − φν)
j

2
+ π y = −π

n
(ml −mν) j + π y with y ∈ Z0 (7.3)

The minimum value for | sin(θ13)| is then | cos((φl − φν)
j
2) sin(θl) cos(θν) +

(−1)y+1 cos(θl) sin(θν)|. However, in all cases the expression is only minimized for

y = 0, 2, . . ., as the involved sines and cosines are all positive. As JCP is proportional to

sin((φl − φν)
j
2 + α), it is zero for the calculated value of α. Therefore δ must be either

0 or π. Additionally, we found an explanation for the values of α shown in table 3 given

in terms of the group theoretical quantities, i.e. 2π − 3 π
7 ≈ 4.937, 2π − 5 π

14 ≈ 5.161 and

2π − 2 π
7 ≈ 5.386. As a last observation we report that there exist similarities among

the different cases, e.g. fixing the (21) element to be cos(3 π
7 ) is similar to fixing the (31)

element to the same value. The cases coincide concerning the fit values of θl, θν and α

and the resulting mixing angles sin2(θ12) and sin2(θ13) (up to O(10−6)), whereas sin2(θ23)

and δ are shifted. This can be understood, since the mixing matrices are related through

the interchange of the second and third row.

Using the 2σ bound sin2(θ13) ≤ 0.025 no solution with χ2 < 1 is found in the cases in

which the (21) or the (31) element is fixed to the value cos(3 π
7 ), since the values for sin2(θ13)

shown in table 3 are quite large. For the other configurations we again find viable fits in

which the values θl, θν and α are very similar to the ones given in table 3.

Apart from studying how well one can accommodate the experimentally allowed ranges,

it is also interesting to see whether one can reproduce some special mixing pattern in

the lepton sector. In the following we discuss the TBM scenario which has initially been

discussed in [16], since all elements of the lepton mixing matrix can be written in terms of
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Element (ij) Possible cosines

(11) cos(3 π
14 ) (≈ 0.7818)

(12) cos(2 π
7 ) (≈ 0.6235)

(21) cos(5 π
14 ) (≈ 0.4339)

(22) cos(2 π
7 ) (≈ 0.6235)

(31) cos(5 π
14 ) (≈ 0.4339)

(32) cos(2 π
7 ) (≈ 0.6235)

Table 4: Possibilities for the group theoretically determined element in VMNS, if TBM is assumed

to be the best fit.

fractions of square roots 1√
2
, 1√

3
and 1√

6
:

V TBM
MNS =







2√
6

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2






(7.4)

corresponding to sines of the mixing angles:

sin2(θTBM
23 ) =

1

2
, sin2(θTBM

12 ) =
1

3
and sin2(θTBM

13 ) = 0 .

The uncertainty in the mixing matrix elements is taken to be 10%, i.e. the fixed element

given by cosine | cos( l π
7 )| for l = 0, 1, 2, . . . , 6 or | cos( l π

14 )| with l = 0, 1, 2, . . . , 13 should lie

in one of the ranges:

V
TBM (range)
MNS =







0.73 − 0.90 0.52 − 0.64 < 0.20

0.37 − 0.45 0.52 − 0.64 0.64 − 0.78

0.37 − 0.45 0.52 − 0.64 0.64 − 0.78






(7.5)

The bound on the (13) element is taken to be the same as in eq. (7.1). As shown in table 4,

the elements (11) and (12) can now be described by a cosine of the announced form, while

we find less possibilities for the other elements compared to the case of the experimentally

allowed range, see table 2. The numerical analysis is analogous to the one above. The

results are very similar apart from the case in which the (11) element is determined by

group theory. Therefore, we focus on the discussion of this case. First of all, we find that

θl can take values in a certain range instead of being fixed to a single value. All of them

lead to the same mixing angles. The same is true for α which varies between 0 and 2π.

This is related to the fact that we do not fit the CP phase δ (or equivalently the Jarlskog

invariant JCP). As a result JCP can take any value in the range (−5.776 . . . 5.776) × 10−2.

We observe that θν is fixed by the fit of sin2(θ12) and sin2(θ13). Fitting them at the same

time leads, unfortunately, to a too large value for sin2(θ13) (see table 5). The allowed

range for θl can then be found analytically under the assumption that sin2(θ23) = 1
2 , since

in this case the (23) and (33) element of VMNS have to be equal. Equating the expressions
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Element Cosine θl θν α sin2(θ12) sin2(θ23) sin2(θ13) δ

(11) cos(3 π
14

) 0.4396− 1.131 1.139 ∈ [0, 2π) 0.3441 0.5000 6.808 × 10−2 ∈ [∼ 0,∼ 2π)

(12) cos(2 π
7

) − − − − − − −
(21) cos(5 π

14
) 1.132 0.6697 5.161 0.3334 0.5000 1.968 × 10−3 ∼ 0

(22) cos(2 π
7

) 0.8235 0.4557 5.386 0.3331 0.4991 1.245 × 10−2 ∼ π

(31) cos(5 π
14

) 1.132 0.6697 5.161 0.3334 0.5000 1.968 × 10−3 ∼ π

(32) cos(2 π
7

) 0.8235 0.4557 5.386 0.3331 0.5009 1.245 × 10−2 ∼ 0

Table 5: Numerical results in the case of TBM. We assume that the bound on sin2(θ13) is 0.1 and

10% errors for the other two sine squares. The values of δ have a numerical precision of O(10−6).

Note that in case of the (11) element being cos(3 π
14

) δ can take arbitrary values (for details see text).

|(V 11
mix)23|2 and |(V 11

mix)33|2 found in appendix A leads to

tan(2 θl) =
sin2(θν) − cos2

(

(φl − φν)
j
2

)

cos2(θν)

cos
(

(φl − φν)
j
2 + α

)

cos
(

(φl − φν)
j
2

)

sin(2 θν)
(7.6)

with θν determined by sin2(θ12,13). Allowing α ∈ [0, 2π) one finds the maximal range of θl

to be z ≤ θl ≤ π
2 − z with z ≈ 0.4396 for θν ≈ 1.139 and (φl − φν)

j
2 = 3 π

14 which

corresponds to the numerical values given in table 5. Furthermore, eq. (7.6) shows that θl

is a function of α.

Demanding sin2(θ13) ≤ 0.025 removes the possibility that the (11) element of VMNS is

determined by group theory, while it leads to expected slight changes in the results of the

fits for the rest of the cases.

8. Summary and conclusions

It has been pointed out in [1, 2] that it is possible to predict |Vus| as cos(3 π
7 ) ≈ 0.2225 with

the help of a dihedral symmetry, broken in a non-trivial way. Here we first studied which of

the other elements of VCKM can also be described in this way for certain values of the group

index n of the dihedral symmetry. For the smallest two appropriate values of n, n = 7 and

n = 14, this is possible for all elements of the 1− 2 sub-block of VCKM. Thereby, the other

elements can be fitted by choosing the free angles θu and θd and the phase α properly. We

presented a low energy model for the quark sector with the flavor symmetryD7. It is broken

only spontaneously at the electroweak scale by Higgs fields transforming as doublets under

SU(2)L. With a numerical fit we showed that all quark masses and mixing parameters

can be accommodated well at the same time. As the VEV configuration determines the

subgroup to which the flavor symmetry is broken, it is necessary to investigate whether

this can be achieved by the Higgs potential. A detailed study revealed that this is possible.

However, there are two obstacles: the Higgs masses turn out to be too small (some of them

are even below the LEP bound [17]), if we do not assume additional ingredients such as

soft breaking terms in the potential, and secondly, we are only able to accommodate the
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VEV configuration as one possible solution of the Higgs potential, but not as a favored

one. Moreover, it is well-known that in multi-Higgs doublet models there is in general no

mechanism to stabilize a certain VEV configuration. Therefore this model is meant as a

proof of principle rather than a realistic model. A way to circumvent these problems is

to disentangle the scales of the electroweak and the flavor symmetry breaking by using

flavored gauge singlets instead of Higgs doublets and thereby break the dihedral symmetry

at higher energies [6]. Accounting for the fact that the Cabibbo angle θC is roughly an order

of magnitude larger than the two other mixing angles θq
13 and θq

23 one can look for models

in which θC is given in terms of group theoretical quantities and θq
13 and θq

23 vanish at LO.

For this purpose, we can either simply reduce the number of Higgs fields in the model by

omitting some fields which are allowed to have a non-trivial VEV in principle or we can

break the dihedral symmetry down to one of its dihedral subgroups, Dq, q > 1, instead of

Z2. However, for the second possibility we have to use D14 instead of D7. The preserved

subgroups are then of the form D2 =< A7,BAm >. Also here two different D2 groups

are preserved in the up quark and down quark sector in order to generate a non-vanishing

Cabibbo angle. One possible choice is mu = 6 and md = 0. Finally, we also studied the

lepton mixing matrix VMNS numerically under the assumption that neutrinos are Dirac

particles and normally ordered. Since the elements of VMNS are much less constrained than

the ones of VCKM much more combinations of the group theoretical quantities n, j, ml and

mν can be used in order to describe an element of VMNS. However, since we expect that

the leptons transform under the same flavor symmetry as the quarks, we only considered

the cases n = 7 and n = 14. A numerical analysis shows that the experimental fit values

of the mixing angles can be accommodated well in most of the cases. A common feature of

all fits is the fact that JCP vanishes. We also studied how well one could mimic the TBM

scenario. This is possible in various cases. The case, in which the (11) element of |VMNS| is

determined by group theory, is thereby the most interesting one, since only this case allows

for non-trivial CP violation. However, the value of sin2(θ13) turns out to be very large.

We focussed on the case of Dirac neutrinos, since then all formulae found in case of the

quarks are applicable also to the lepton sector. But, neutrinos can be Majorana particles

as well. If we assume that they acquire masses from Higgs triplets only, the analysis done

in section 7 is not changed. Things can change, if we consider the type 1 seesaw instead,

since we then deal with the Dirac neutrino and the right-handed Majorana mass matrices,

which can preserve different subgroups of the flavor symmetry.7 Beyond that, we could

encounter new results with the neutrino mass hierarchy being inverted (m3 < m1 < m2).

Our study is by no means a complete study of all possible mixing structures which can in

principle arise from a dihedral flavor symmetry with residual subgroups. For example, in

all cases we presented here the subgroups, preserved in the up and down quark sector, have

the same group structure (either Z2 or D2). In general, however, these group structures

could be different, as employed in [2, 4 – 6, 18, 19].

Finally, let us remark that a common feature of the model(s) shown here is the need for

an additional Zn
(aux) symmetry which can separate the different sectors according to the

7This is, for example, the case in the models [18, 19] by Grimus and Lavoura.
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different conserved subgroups of the flavor symmetry. Due to such an additional symmetry

an embedding of these models into an SO(10) GUT is in general not straightforward.

However, assigning the quarks to

Q1, u
c
1 ∼ (11,+1) ,

(

Q2

Q3

)

,

(

uc
2

uc
3

)

∼ (21,+1) , dc
1 ∼ (11,−1) ,

(

dc
2

dc
3

)

∼ (21,−1)(8.1)

under D7 × Z
(aux)
2 as done in section 4.1.2 still allows an embedding into SU(5) multiplets.
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A. Possible forms of Vmix

According to the three possible identifications of the eigenvalue c − d there exist three
possible diagonalization matrices in each sector (up and down sector, charged lepton and
neutrino sector) U , U ′ and U ′ ′ which are shown in section 3.1. Out of these one can form
nine possible mixing matrices V ab

mix = W T
1 W ⋆

2 with a, b = 1, 2, 3 and Wi ∈ {U,U ′, U ′ ′}
where Wi depends on the group theoretical phase φi (the index mi) and contains the
parameters θi and βi. As shown above, V ab

mix all have the property that the element (ab)
is completely determined by group theory. In the following we abbreviate β1 − β2 with α,
sin(θi) with si and cos(θi) with ci.

V
11
mix=

1

2

0

B

@

1 + ei(φ1−φ2)j (eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2

−(e−iφ1j − e−iφ2j)s1 (1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

(e−iφ1j − e−iφ2j)c1 −(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

1

C

A

V
12
mix=

1

2

0

B

@

(eiφ1j − eiφ2j)s2 1 + ei(φ1−φ2)j −(eiφ1j − eiφ2j)c2

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(e−iφ1j − e−iφ2j)s1 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (e−iφ1j − e−iφ2j)c1 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

1

C

A

V
13
mix=

1

2

0

B

@

(eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2 1 + ei(φ1−φ2)j

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2 −(e−iφ1j − e−iφ2j)s1

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2 (e−iφ1j − e−iφ2j)c1

1

C

A

V
21
mix=

1

2

0

B

@

−(e−iφ1j − e−iφ2j)s1 (1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

1 + ei(φ1−φ2)j (eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2

(e−iφ1j − e−iφ2j)c1 −(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

1

C

A

V
22
mix=

1

2

0

B

@

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(e−iφ1j − e−iφ2j)s1 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

(eiφ1j − eiφ2j)s2 1 + ei(φ1−φ2)j −(eiφ1j − eiφ2j)c2

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (e−iφ1j − e−iφ2j)c1 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

1

C

A

V
23
mix=

1

2

0

B

@

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2 −(e−iφ1j − e−iφ2j)s1

(eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2 1 + ei(φ1−φ2)j

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2 (e−iφ1j − e−iφ2j)c1

1

C

A

V
31
mix=

1

2

0

B

@

−(e−iφ1j − e−iφ2j)s1 (1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

(e−iφ1j − e−iφ2j)c1 −(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

1 + ei(φ1−φ2)j (eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2

1

C

A
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V
32
mix=

1

2

0

B

@

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(e−iφ1j − e−iφ2j)s1 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (e−iφ1j − e−iφ2j)c1 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2

(eiφ1j − eiφ2j)s2 1 + ei(φ1−φ2)j −(eiφ1j − eiφ2j)c2

1

C

A

V
33
mix=

1

2

0

B

@

(1 + e−i(φ1−φ2)j)s1s2 + 2eiαc1c2 −(1 + e−i(φ1−φ2)j)s1c2 + 2eiαc1s2 −(e−iφ1j − e−iφ2j)s1

−(1 + e−i(φ1−φ2)j)c1s2 + 2eiαs1c2 (1 + e−i(φ1−φ2)j)c1c2 + 2eiαs1s2 (e−iφ1j − e−iφ2j)c1

(eiφ1j − eiφ2j)s2 −(eiφ1j − eiφ2j)c2 1 + ei(φ1−φ2)j

1

C

A

The measure of CP violation Jab
CP is given for the matrices V ab

mix as

J11
CP = JCP(j, φ1, φ2; θ1, θ2, α) , J12

CP = −JCP(j, φ1, φ2; θ1, θ2, α) ,

J13
CP = JCP(j, φ1, φ2; θ1, θ2, α) (A.1)

J21
CP = −JCP(j, φ1, φ2; θ1, θ2, α) , J22

CP = JCP(j, φ1, φ2; θ1, θ2, α) ,

J23
CP = −JCP(j, φ1, φ2; θ1, θ2, α) (A.2)

J31
CP = JCP(j, φ1, φ2; θ1, θ2, α) , J32

CP = −JCP(j, φ1, φ2; θ1, θ2, α) ,

J33
CP = JCP(j, φ1, φ2; θ1, θ2, α) (A.3)

with JCP(j,φ1, φ2; θ1, θ2, α) = −1

8
sin((φ1 − φ2) j) sin

(

1

2
(φ1 − φ2) j

)

× sin(2 θ1) sin(2 θ2) sin

(

1

2
(φ1 − φ2) j + α

)

(A.4)

B. Group theory of D7

The group D7 has two one- and three two-dimensional irreducible representations which

we denote as 11, 12, 21, 22 and 23. 11 is the trivial representation of the group. All

two-dimensional representations are faithful. The order of the group is 14. The generator

relations for the two generators A and B are:

A7 = 1 , B2 = 1 , ABA = B .

A and B can be chosen to be

A =

(

e
2 π i
7 0

0 e−
2 π i
7

)

, B =

(

0 1

1 0

)

for 21

A =

(

e
4 π i
7 0

0 e−
4 π i
7

)

, B =

(

0 1

1 0

)

for 22

A =

(

e
6 π i
7 0

0 e−
6 π i
7

)

, B =

(

0 1

1 0

)

for 23

For the one-dimensional representations 11 and 12 A and B can be found in the character

table table 6. The Kronecker products are:

11 × µ = µ , 12 × 12 = 11 , 12 × 2i = 2i

[21 × 21] = 11 + 22 , {21 × 21} = 12

[22 × 22] = 11 + 23 , {22 × 22} = 12
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classes

C1 C2 C3 C4 C5

G 1 A A2 A3 B
◦Ci 1 2 2 2 7
◦hCi

1 7 7 7 2

11 1 1 1 1 1

12 1 1 1 1 -1

21 2 2 cos(ϕ) 2 cos(2ϕ) 2 cos(3ϕ) 0

22 2 2 cos(2ϕ) 2 cos(4ϕ) 2 cos(6ϕ) 0

23 2 2 cos(3ϕ) 2 cos(6ϕ) 2 cos(9ϕ) 0

Table 6: Character table of the group D7. ϕ is 2π
7

. Ci are the classes of the group, ◦Ci is the

order of the ith class, i.e. the number of distinct elements contained in this class, ◦hCi
is the order

of the elements S in the class Ci, i.e. the smallest integer (> 0) for which the equation S
◦
hCi = 1

holds. Furthermore the table contains one representative for each class Ci given as product of the

generators A and B of the group.

[23 × 23] = 11 + 21 , {23 × 23} = 12

21 × 22 = 21 + 23 , 21 × 23 = 22 + 23 , 22 × 23 = 21 + 22 ,

where µ is any representation of the group and [ν × ν] denotes the symmetric part of the

product ν × ν, while {ν × ν} is the anti-symmetric one.

The Clebsch Gordan coefficients are trivial for 11×µ and 12×12. For 12×2i a non-trivial

sign appears
(

B a1

−B a2

)

∼ 2i

for B ∼ 12 and

(

a1

a2

)

∼ 2i. 11 and 12 of 2i × 2i are of the form

a1 a
′
2 + a2 a

′
1 ∼ 11 , a1 a

′
2 − a2 a

′
1 ∼ 12

for

(

a1

a2

)

,

(

a′1
a′2

)

∼ 2i. The two-dimensional representations also contained in these

products read:

for i = 1 :

(

a1 a
′
1

a2 a
′
2

)

∼ 22 , for i = 2 :

(

a2 a
′
2

a1 a
′
1

)

∼ 23 , for i = 3 :

(

a2 a
′
2

a1 a
′
1

)

∼ 21 .

For the rest of the products 2i × 2j we get:

(

a1

a2

)

∼ 21 ,

(

b1

b2

)

∼ 22 :

(

a2 b1

a1 b2

)

∼ 21 ,

(

a1 b1

a2 b2

)

∼ 23
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(

a1

a2

)

∼ 21 ,

(

b1

b2

)

∼ 23 :

(

a2 b1

a1 b2

)

∼ 22 ,

(

a2 b2

a1 b1

)

∼ 23

(

a1

a2

)

∼ 22 ,

(

b1

b2

)

∼ 23 :

(

a2 b1

a1 b2

)

∼ 21 ,

(

a2 b2

a1 b1

)

∼ 22

All these formulae are just special cases of the more general formulae given in [13, 1] which

hold for dihedral groups Dn with an arbitrary index n.

C. Higgs potential

The potential Vu of Hu
s and Hu

1,2 is of the same form as V3 in eq. (5.1) with all parameters

carrying an additional upper index u. As already stated, the potential contains an

accidental U(1) symmetry. The most general potential involving only the scalar fields Hd
s ,

Hd
1,2 and χd

1,2 is

Vd = −(µd
s)

2Hd
s

†
Hd

s − (µd
D)2

(

2
∑

i=1

Hd
i

†
Hd

i

)

− (µ̃d
D)2

(

2
∑

i=1

χd
i

†
χd

i

)

(C.1)

+λd
s(H

d
s

†
Hd

s )2+λd
1

(

2
∑

i=1

Hd
i

†
Hd

i

)2

+λ̃d
1

(

2
∑

i=1

χd
i

†
χd

i

)2

+λd
2(H

d
1
†
Hd

1−Hd
2
†
Hd

2 )2

+λ̃d
2(χ

d
1
†
χd

1 − χd
2
†
χd

2)
2 + λd

3|Hd
1
†
Hd

2 |2 + λ̃d
3|χd

1
†
χd

2|2 + σd
1(Hd

s

†
Hd

s )

(

2
∑

i=1

Hd
i

†
Hd

i

)

+σ̃d
1(H

d
s

†
Hd

s )

(

2
∑

i=1

χd
i

†
χd

i

)

+{σd
2(Hd

s

†
Hd

1 )(Hd
s

†
Hd

2 )+h.c.}+{σ̃d
2(Hd

s

†
χd

1)(H
d
s

†
χd

2)+h.c.}

+σd
3

(

2
∑

i=1

|Hd
s

†
Hd

i |2
)

+σ̃d
3

(

2
∑

i=1

|Hd
s

†
χd

i |2
)

+ τd
1

(

2
∑

i=1

Hd
i

†
Hd

i

)(

2
∑

i=1

χd
i

†
χd

i

)

+τd
2 (Hd

1
†
Hd

1 −Hd
2
†
Hd

2 )(χd
1
†
χd

1 − χd
2
†
χd

2) + {τd
3 (Hd

1
†
χd

1)(H
d
2
†
χd

2) + h.c.}

+τd
4

(

2
∑

i=1

|Hd
i

†
χd

i |2
)

+ {τd
5 (Hd

1
†
χd

2)(H
d
2
†
χd

1) + h.c.} + τd
6 ( |Hd

1
†
χd

2|2 + |Hd
2
†
χd

1|2)

+{τd
7 {(Hd

2
†
χd

1)(χ
d
2
†
χd

1) + (Hd
1
†
χd

2)(χ
d
1
†
χd

2)} + h.c.}
+{ωd

1{(Hd
s

†
Hd

1 )(Hd
2
†
χd

2) + (Hd
s

†
Hd

2 )(Hd
1
†
χd

1)} + h.c.}
+{ωd

2{(Hd
s

†
Hd

1 )(χd
1
†
Hd

1 ) + (Hd
s

†
Hd

2 )(χd
2
†
Hd

2 )} + h.c.}
+{ωd

3{(Hd
s

†
χd

1)(H
d
1
†
Hd

2 ) + (Hd
s

†
χd

2)(H
d
2
†
Hd

1 )} + h.c.}

This five Higgs potential is free from accidental symmetries. However, the combined

potential Vu + Vd has an accidental SU(2) ×U(1)×U(1) symmetry. It is broken explicitly

by mixing terms, which couple the Higgs fields Hu
s,1,2 and Hd

s,1,2/χ
d
1,2. Vmixed contains all
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such terms, which are invariant under the symmetry D7 × Z
(aux)
2 :

Vmixed = κ1(H
u
s
†Hu

s )(Hd
s

†
Hd

s ) + {κ2(H
u
s
†Hd

s )2 + h.c.} + κ3|Hu
s
†Hd

s |2 (C.2)

+κ4

(

2
∑

i=1

Hu
i
†Hu

i

)(

2
∑

i=1

Hd
i

†
Hd

i

)

+ κ̃4

(

2
∑

i=1

Hu
i
†Hu

i

)(

2
∑

i=1

χd
i

†
χd

i

)

+{κ5

(

2
∑

i=1

Hu
i
†Hd

i

)2

+ h.c.} + κ6|Hu
1
†Hd

1 +Hu
2
†Hd

2 |2

+κ7(H
u
1
†Hu

1 −Hu
2
†Hu

2 )(Hd
1
†
Hd

1 −Hd
2
†
Hd

2 ) + κ̃7(H
u
1
†Hu

1 −Hu
2
†Hu

2 )(χd
1
†
χd

1−χd
2
†
χd

2)

+{κ8(H
u
1
†Hd

1 −Hu
2
†Hd

2 )2 + h.c.} + {κ̃[5−8](H
u
1
†χd

1)(H
u
2
†χd

2) + h.c.}
+κ9|Hu

1
†Hd

1 −Hu
2
†Hd

2 |2 + κ̃[6+9]( |Hu
1
†χd

1|2 + |Hu
2
†χd

2|2)

+κ10{(Hu
2
†Hu

1 )(Hd
1
†
Hd

2 ) + h.c.} + {κ11(H
u
2
†Hd

1 )(Hu
1
†Hd

2 ) + h.c.}
+{κ̃11(H

u
1
†χd

2)(H
u
2
†χd

1)+h.c.} + κ12(|Hu
2
†Hd

1 |2+|Hu
1
†Hd

2 |2)

+κ̃12(|Hu
1
†χd

2|2+|Hu
2
†χd

1|2) + κ13(H
u
s
†Hu

s )

(

2
∑

i=1

Hd
i

†
Hd

i

)

+ κ̃13(H
u
s
†Hu

s )

(

2
∑

i=1

χd
i

†
χd

i

)

+{κ14(H
u
s
†Hd

1 )(Hu
s
†Hd

2 )+h.c.} + {κ̃14(H
u
s
†χd

1)(H
u
s
†χd

2)+h.c.}
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s
†Hd
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†Hd

2 |2) + κ̃15(|Hu
s
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1|2+|Hu
s
†χd

2|2)

+κ16(H
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s

†
Hd

s )

(
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)
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1 )(Hd
s

†
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(
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s

†
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i |2
)

+

{

κ19(H
u
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†Hd

s )

(
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∑

i=1

Hu
i
†Hd

i

)

+h.c.

}

+

{

κ20(H
u
s
†Hd

s )

(
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∑
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Hd
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†
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i

)

+h.c.

}
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s
†Hu

1 )(Hd
s

†
Hd

2 ) + (Hu
s
†Hu

2 )(Hd
s

†
Hd

1 )} + h.c.}
+{κ22{(Hu

s
†Hd

1 )(Hd
s

†
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s
†Hd
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s

†
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s
†Hu
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1
†
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s
†Hu
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2
†
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+{κ24{(Hu

s
†Hd
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1
†Hd

s ) + (Hu
s
†Hd
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2
†Hd
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s

†
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2
†χd
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s

†
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1
†χd
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s

†
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1
†
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s

†
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2 )(χd
2
†
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†
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u
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+{κ32{(Hu

s
†Hu
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In our numerical analysis we restricted ourselves to the inclusion of a minimal number

of terms from Vmixed which break all accidental symmetries such that only three Higgs
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particles remain massless which are eaten by the W± and Z0 boson. As explained in the

main part of the text, the three terms κ2, κ5 and κ19 are sufficient.

The numerical example in section 4.1.1 and section 4.2.1 needs the following VEV

configuration

〈Hd,u
s 〉=61.5GeV, 〈Hd

1 〉=〈Hd
2 〉=〈χd

1〉=〈χd
2〉=61.5GeV, 〈Hu

1 〉=61.5 e−
3πi
7 GeV

and 〈Hu
2 〉=61.5 e

3πi
7 GeV

which allows real parameters in the potential Vd, as all fields Hd
s , Hd

1,2 and χd
1,2 have

real VEVs. Furthermore we can remove the phase of σu
2 such that we are left with three

complex parameters stemming from Vmixed.

The mass parameters are chosen to be around the electroweak scale, i.e. µu
s = 100GeV,

µu
D = 200GeV, µd

s = 100GeV, µd
D = 200GeV and µ̃d

D = 150GeV. One possible setup of

quartic couplings is then:

λu
s=0.959337 , λu

1=2.52548 , λu
2=0.374967 , λu

3=−0.588842 , σu
1=1.62353 ,

σu
2=−0.276964 , σu

3=−0.283914 ,

λd
s=1.70438 , λd

1=3.76598 , λ̃d
1=1.47549 , λd

2=−0.344036 , λ̃d
2=−0.185157 ,

λd
3=−0.304589 , λ̃d

3=−0.733236 , σd
1=0.22429 , σ̃d

1=4.6792 , σd
2=−0.87457 ,

σ̃d
2=−2.0284 , σd

3=0.961454 , σ̃d
3=0.649984 , τd

1=2.96557 , τd
2=1.22903 ,

τd
3=−2.02133 , τd

4=−1.22242 , τd
5=−2.31577 , τd

6=2.38236 , τd
7=−0.660102 ,

ωd
1=0.452165 , ωd

2=−2.112 , ωd
3=−1.63452 ,

κ2=−0.638073+i 0.0277608 , κ5=0.312782+i 0.140162 , κ19 = −0.278402−i 0.124756

Note that all parameters have absolute values smaller than 5 and hence they are still

in the perturbative regime. With these parameter values we obtain the desired VEV

structure. The Higgs masses are then 513GeV, 499GeV, 426GeV, 414GeV, 386GeV,

365GeV, 321GeV, 266GeV, 246GeV, 227GeV, 178GeV, 159GeV, 134GeV, 81GeV and

55GeV for the neutral scalars. Due to the explicit CP violation in the potential we can no

longer distinguish between scalars and pseudo-scalars. For the charged scalar fields we get

367GeV, 333GeV, 294GeV, 261GeV, 145GeV, 115GeV and 55GeV. They are therefore

in general too light to pass the constraints coming from direct searches as well as from

bounds on FCNCs. Nevertheless, soft breaking terms of mass dimension two of the order

of 10 TeV could lift the masses above these experimental bounds.
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